• R Programming
  • 1 Intro to R Bookdown
  • 2 Introduction to R
    • 2.1 R Markdown File
    • 2.2 Learning objectives
    • 2.3 Comments
    • 2.4 Syntax
    • 2.5 Creating variables
    • 2.6 Printing Variables
  • 3 Data types and data structures
    • 3.1 Data Types
    • 3.2 Atomic Classes
      • 3.2.1 Numeric
      • 3.2.2 Integer
      • 3.2.3 Logical
      • 3.2.4 Character
      • 3.2.5 Missing Value
    • 3.3 Arithmetic Operations
    • 3.4 Logical operators
    • 3.5 Exercise
    • 3.6 Data Structures
    • 3.7 Vectors
      • 3.7.1 Numeric
      • 3.7.2 Integer
      • 3.7.3 Logical
      • 3.7.4 Character
      • 3.7.5 Vector attributes
    • 3.8 Factors
    • 3.9 Exercise
      • 3.9.1 Built-in functions
      • 3.9.2 Vector Operations
      • 3.9.3 Recycling
      • 3.9.4 Indexing and subsetting
    • 3.10 Lists
      • 3.10.1 Indexing and subsetting
      • 3.10.2 Built-in functions
    • 3.11 Matrices
      • 3.11.1 Attributes
      • 3.11.2 Built-in functions
    • 3.12 Data frames
      • 3.12.1 Indexing and sub-setting
    • 3.13 Coercion
    • 3.14 Hands on: Data types
  • 4 Control Structures & Functions
    • 4.1 Learning Objectives
    • 4.2 Conditional Statements
    • 4.3 For & While Loops
    • 4.4 Functions
    • 4.5 Installing packages
    • 4.6 Detour || Seeking help
    • 4.7 Exercise
      • 4.7.1
  • 5 Basic data manipulation
    • 5.1 Reading/writing data
      • 5.1.1 Text files
      • 5.1.2 R objects
    • 5.2 Exploring data frames
      • 5.2.1 Adding columns and rows
      • 5.2.2 Removing columns and rows
      • 5.2.3 Applying filters
      • 5.2.4 Editing specific elements
    • 5.3 Hands-on: basic data manipulation
  • 6 Advanced data manipulation
    • 6.1 Manipulation with dplyr
      • 6.1.1 Introducing pipes
      • 6.1.2 Using select()
      • 6.1.3 Using filter()
      • 6.1.4 Using group_by()
      • 6.1.5 Using summarize()
      • 6.1.6 Using mutate()
      • 6.1.7 Putting them all together
    • 6.2 Hands-on advanced data manipulation
  • 7 Generating visual outputs
    • 7.1 Graphics with base R
    • 7.2 Graphics with ggplot2
      • 7.2.1 Some ggplot tricks
  • 8 Real life application
  • 9 Software development concepts
    • 9.1 Good coding practices
      • 9.1.1 Script structure
      • 9.1.2 Functions
      • 9.1.3 External packages
    • 9.2 Debugging and troubleshooting
  • 10 References
  • 11 Solutions || Data Types
    • 11.1 Atomic Classes
      • 11.1.1
    • 11.2 Vectors
    • 11.3 Matrices
    • 11.4 Lists
    • 11.5 Data frames
    • 11.6 Coercion
  • 12 Solutions || Basic Data Manipulation
    • 12.1 Writing data
    • 12.2 Exploring data frames
  • 13 Solutions || Adv. Data Manipulation
  • 14 Solutions || Medical Data
    • 14.1 Clinics included
      • 14.1.1 Number of clinics
      • 14.1.2 Number of valid tests
      • 14.1.3 Testing trend over time
    • 14.2 Number of positive tests
      • 14.2.1 Number of positive tests in the first 100 days
      • 14.2.2 Tests by age group
    • 14.3 Processing times
    • 14.4 Bonus - Viral load
  • 15 Workshop Slides
  • Published with bookdown

Intro to R

10 References

  • Base R Cheat Sheet
  • Google’s R Style Guide
  • Mastering Software Development in R
  • R for reproducible statistical analysis
  • Medicaldata - covid testing dataset